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Abstract-A new method for obtaining approximate equations for natural convection flows is presented. 
The systematic application of this method leads to explicit conditions for the neglect of various terms. 
It is shown that this method allows the specification of the conditions under which the traditional 
Boussinesq approximation applies to a given Newtonian liquid or gas. The method is applied to room 

temperature water and air. 

NOMENCLATURE 

a, b, c, d, e,J m, n, fluid property coefficients; 

cer specific heat at constant pressure; 

9, gravitational acceleration; 

K thermal conductivity; 

ki, vertical unit vector; 

L, fluid layer depth; 

P, pressure; 

Pr, Prandtl number; 

43 velocity scale; 

Ra, Rayleigh number; 

T, temperature; 

t, time; 

vi, velocity vector; 

xi, position vector. 

Greek symbols 

coefficient of thermal expansion; 
isothermal compressibility; 
deformation rate tensor; 

811, non-dimensional parameters; 
temperature difference scale; 
thermal diffusivity; 
absolute viscosity; 
kinematic viscosity; 
density; 

viscous dissipation function. 

Subscripts 

0, denotes reference state; 

s, denotes static, stably stratified atmosphere; 
denotes non-dimensional quantity. 

INTRODUCTION 

IN BUQYANCY driven flows, the exact governing equa- 
tions are intractable. Some approximation is needed, 
and the simplest one which admits buoyancy is the 

*Present address: Heat Transfer and Fluid Dynamics 
Department, Oak Ridge National Laboratory, P.O. Box Y, 
Oak Ridge, TN 37830, U.S.A. 

Boussinesq approximation. This approximation is 

commonly understood to consist of the following: 

1. Density is assumed constant except when it 
directly causes buoyant forces; 

2. All other fluid properties are assumed constant; 
3. Viscous dissipation is assumed negligible. 

The first point means that the continuity equation has 

its incompressible form and that density is considered 
variable only in the gravitational term of the momen- 
tum equation. As a consequence of this assumption, 

acoustic phenomena cannot be treated. The other 
points simplify the equations so that attention is 
focused on the effects of buoyancy. 

Although these equations are named after Boussinesq 
[l], they seem to have been first used by Oberbeck 
[2]. The plausibility argument given by Chandrasekhar 
[3] is often referenced, but the first attempt at a detailed 
derivation in a dynamical situation was made by 
Spiegel and Veronis [4]. They considered a perfect gas 
of constant properties and used an order of magnitude 
argument. Similar assumptions and methods were 
used by Gebhart [S] and Plate [6]. 

Mihaljan [7] used a mathematically rigorous 
small parameter expansion technique to derive the 
Boussinesq equations. He assumed that density was a 
linear function of temperature only and that the other 
properties were constant. A generalization of this 

approach was presented by Malkus [8, 91 who con- 
sidered a perfect gas and allowed thermal diffusivity 
and viscosity to vary with temperature only. 

The present derivation improves on previous works 
in a number of significant respects : 

1. It applies to both liquids and gases; 
2. It allows all fluid properties to vary with tem- 

perature and pressure; 
3. It is mathematically straightforward; 
4. It allows an explicit calculation of the region of 

validity of the equations. 
The importance ofthis last point should be emphasized. 
The Boussinesq approximation is the basis for most 
of what is known about natural convection. The 
application of this knowledge to technological or 
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environmental (USAEC [lo]) problems can be mean- we shall require that most of these properties be 

ingful only when the conditions under which the adequately approximated by constant values. In those 

Boussinesq equations are valid are explicitly known. instances where linear terms are retained in the final 

The plan of the derivation can be briefly outlined. result, the legitimacy of this approximation must be 

All fluid properties are assumed to vary linearly with verified a posteriori. There is usually no difficulty in 

temperature and pressure. Then the general governing assuming linearized Taylor expansions, but the peculiar 

equations are scaled for natural convection problems case of water at 4C should always be kept in mind, 

so that each non-dimensional term is of order one or It should also be noted that the general approach of 

less and is multiplied by a characteristic non-dimen- this derivation does not hinge upon the use of linearized 

sional parameter. By requiring certain of the non- property variations. Other functions could be accom- 

dimensional parameters to be small, the Boussinesq modated without undue distress. 

equations are produced. This derivation is not limited The linearized approximations to equations (4)-(8) 

to any particular geometry. By appropriate choice of are 

the characteristic scales, it applies to natural convection 
in geometries such as vertical plates and horizontal 

P = Po[l-~o(~-T,)+B,(~-~,)l, (9) 

cylinders as well as to horizontal layers. cp = cpo[l +M’-- T,)+b,(P-P,)], (10) 

Throughout this work equations are expressed in P = PoCl +co(T- T,)-tdo(P-PO)], (11) 
Cartesian tensor notation and the repeated index 
summation convention is used. 

c( = ccO[l+eO(T-T,)+fo(P-Po)], (12) 

K = Ko[l+mo(T-To)+no(P-PO)], (13) 

FORMULATION OF THE PROBLEM where 

This investigation begins with the usual forms of the 

continuity, momentum, and energy equations for a 
1 ap a= --- 

Newtonian fluid of variable properties and zero second 

viscosity (Batchelor [l 11): _ _ 

(1) 

p8T’ 

I ac 
0=--P 

cp dT' 

1 ap 
c=---, 

PaT 

DP av, 
~+P,x.=Q 

I 

DVi aP Sij 
PZ= -~-pgki+~+Cj~~ 

I J 

DT Ka=T aK aT 

where 

and 

In order to complete the specification of the problem, 

one must also have relationships for the determination 
of the fluid properties. Since the only reversible mode 
of work for a Newtonian fluid is compression, its 
properties are functions of two thermodynamic vari- 
ables. Hence, the necessary equations may be sym- 
bolically written as 

p = p(T, P) = equation of state, (4) 

cp = c,(T, 0, (5) 

‘P = P(T, P), (6) 

a = cc(T, P), (7) 

K = K(T, P). (8) 

Usually, these functions are imperfectly known and 
must be inferred from tabular data. To proceed 
analytically, we shall assume that each may be approxi- 
mated by a linearized Taylor expansion. Eventually, 

(2) 

(3) 

i aa 
e=-- 

adT' 

1 dK 
m=zdT, 

and where the subscript 0 denotes the reference state 

(To > PO). 
Following Calder [12], we will remove the effects 

of static stratification. We assume a static, stably 

stratified atmosphere denoted by subscript s and 
governed by 

ii& 
- = -psgki 
ax, 

and 

(14) 

(15) 

which are deduced from equations (2) and (3). Accord- 
ing to equations (9) and (13), ps and K, are given by 

PS = POP-ao(T,-T,)+Po(P,-PO)] (16) 

and 

K = Ko[I+mo(T,- T,)+no(P,-PO)]. (17) 

The solution of equations (14)-(17) is not important 
at this time. Equation (14) is subtracted from the 
momentum equation (2), and the linearized property 
equations (9)-(13) are substituted into the result and 
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into the continuity (1) and energy (3) equations. The 
resulting equations are 

DT DP 
-ao~+P0~ 

+[l--ao(T-To)+&(P-P,)Iz=O, (18) 
J 

[1-ao(T-To)+flo(P-Po)]~ 

1 3(P-P,) 
=__ ----+ao(T- T,)gki-flo(P-P,)gki 

PO axi 

+v 0 [t+co(T-T)+d (P-P )I% 0 0 
O ax, 

+vO cOg+dO$ rij, (19) 
L J i I 

[~-~OU’-G)+BO(P-PO)] 

x[l+a,(T-T,)+b,(P-PO)]% 

= Ko[l+m,,(T-To)+n,(P-P,,)]g 
J 

I 

dT aP aT 
+Ko moz+"og ax_ 

J J 1 J 

+ [l+edT-T,)+fdP--PO)1 

x (T-To&P-P,)+To;(P-P,)-(T-To) 
i 

x gv,poC1-ao(T,-T,)+Bo(Ps-Po)l 

-TogV~po[l-ao(T-To)+B~(P,-P~)l 

i 

+~[l+c,(T-T,i+do(P-PO)]@, (20) 

where 

vo& 
PO’ 

and 

KO 
Kg=-. 

POCP” 

In the energy equation (20) use has been made of the 
identity 

Tg= (T-To)T 
&P-p,)+ T,D(P-PA 

Dt 

-(T- To)psgV3 - TopsgV3 

and of equation (16) for reasons of later convenience. 

NON-DIMENSIONALIZATION OF THE EQUATlONS 

In order to recover the Boussinesq equations from 
equations (18)-(20), many terms must be eliminated. 
The neglect of these terms is justified in the following 
manner. The equations are non-dimensionalized with 
suitable scales so that all functions of the non- 

dimensional field variables may be considered to be 
of order one or less. The relative importance of these 
terms is then given by non-dimensional constant multi- 
pliers. By requiring that the multipliers be small, the 
terms in question may be neglected. 

The choice of scales depends on the particular 
problem in question. For the sake of definiteness, we 
shall consider natural convection in a horizontal fluid 
layer ofvertical thickness L across which a temperature 
difference 9 is maintained, i.e. the Rayleigh-Benard 
problem. Lengths are non-dimensionalized by the 
distance L. Temperature differences of the forms 
(T-To) and (T,- TO) as well as temperatures acted 
upon by derivatives are of the same order and may 
be properly scaled by 8. A meaningful velocity scale 
must be related to the intensity of motion. For this 
reason, scales related to the molecular diffusivities such 
as vo/L (Kreith [13], Giorgini and Travis [14]) and 
K~/L (Mihaljan [7]) are unrealistic. The scale 
4 = J(aogBL) is used here (Malkus [8,9]). This may 
be thought of as the “free fall” velocity of a thermal. 
The dynamic pressure (P- PJ is scaled by pq’, while 
differences in pressure between different elevations, 
(P-PO) and (P,- PO), and derivatives of pressure are 
scaled by pogL. With these remarks in mind, the 
non-dimensional variables (denoted by tildes) are seen 
to be 

xi = Lli, 

T-T, = f@- To;,,, 

Vi = q8i = (CCogOL)‘Ti, 

L L + 
t=-_i= __ 

c j 
f, 

4 a0g@ 

P-P, = pq’(P-FJ = poaogfIL(P-FJ, 

P-P0 = pogL(P-PO), 

With these definitions, equations (18)-(20) may be 
rearranged to read 

DT DP 
-E1y+E2: 

Dt Dt 

+[l-E,(1’-t)+c,(P_P,)]=O, (22) 
I 

= (V-P,) 
-~+(f-~)ki-E~(P-P,)ki 

I 
(23) 
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where 

El = @ofI, E2 = POPOSL 

Ej = COB, E4 = dOpOgL 

Eg = UO@ &6 = bOPOgL> 

c7 = mo8, Es = n0p0gL 

Eg = eOtl, El0 = hPoBL 

%,I 

c(o geL3 
Ra=----, 

and 

Ko vo 

Pr=S. 
KO 

APPROXIMATION OF THE EQUATIONS 

(24) 

(25) 

By reqtiiring that all the E factors be small so that 
the terms they multiply are small, one can obtain the 
Boussinesq equations from equations (22)-(24). One 
must recognize, however, that the viscous term in the 
momentum equation and the conduction term in the 
energy equation are also multiplied by parameters that 
are frequently small. Nevertheless, they must be re- 
tained when boundaries are present. Thus, we will 
approach the task of simplifying equations (22)-(24) in 
a stepwise fashion. 

In equation (32) we have assumed that To/B 2 10 and 
retained only the largest of the pressure work terms. 
Notice that equations (30)-(32) still contain terms 
representing every distinct physical mechanism which 
was present in the original set [equations (l)-(3)]. 
Equations (30)-(32) will be called the extended 

Boussinesq equations. 

It is known from many convection problems that 

the effects of property variations are usually rather 
uninteresting. Besides, specifying property functions is 
often very difficult. Thus, our first step is to justify use 
of constant values for p, cpr p, tl and K when these 
properties appear as mpltiplieis in equations (22)-(24). 
Inspection shows that this requires that cl, . , cl0 be 
small. Choosing To as the average of the upper and 
lower boundary temperatures and PO as the hydrostatic 
pressure at the mid-level, the values of (T- Tot;,,, (% - To), 
(P-PO), and @,-PO) are at most -0.5. Hence 
requiring 

To proceed to the next order of approximation, 

we shall neglect in equation (32) the pressure work 
term if its multiplier is small with respect to 1 and 
the viscous dissipation term if it is much less than the 
conduction term (since both are “boundary layer” 
type terms). These conditions imply 

and 

leil,... , hoi < 0.1 (26) respectively. 

can lead to an error of at most 10% in terms of the 
form [ 1+ E~(F’- TO) + ;:j(P - PO)]. We shall assume that 
such a condition is adequate to approximate these 
expressions with 1. Hence, equations (22).-(24) become 

DT DP (:“I 
--E1Di+82~+~=0, 

Dt dXj 
(27) 

I (29) 

This first approximation is equivalent to using subscript 

zero values for all properties (except density in the 
buoyancy term) when they appear as multipliers, but 
retaining the linear approximations in the derivatives. 

Without introducing any new assumptions it is 
possible to neglect additional terms in equations (27)- 
(29), since those multiplied by E i,...,~i~ are smaller 

than terms not containing these factors. 

(30) 
aVj 

- 0, dr7j- 

To 101 E 11 - 
e 

d 0.1 

(34) 
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If the problem in question satisfies conditions (26), 
(33), and (34), it is governed by the strict Boussinesq 
equations. In dimensional form these are 

aVj - 0, ax;- (35) 

DVi 1 8(P-Ps) -= --___ 
Dt PO dxi 

+aog(T-T,)ki+Vo$, (36) 
I 

DT iY2T 

-= K”axJz’ Dt (37) 

If either equation (33) or (34) is violated, the corre- 
sponding term must be retained. 

RANGE OF THE APPROXIMATE EQUATIONS 

As concrete examples of the method just presented, 
consider the cases of water and air at To = 15C 
and PO = 1 atm. Table 1 lists the required constants, 
obtained from Batchelor [ 1 l] unless otherwise noted. 
In Table 2 the E parameters are evaluated in terms 
of 0 and L. For water, the most demanding of the 
requirements (26) are that Eg (temperature variation 

Table 1. Fluid properties for water and air at 
T0=15C,P0=latm 

Water Air 

PO 1 g/cm 3 
CP” 4.2 x 10’ ergs/gm C 
“0 1.1 x lo-‘cm2/s 
Pr 8.1 
MO 1.5 x 10-4c-’ 
BO 4.9 x lG_” cm2/dyn 
a0 -2.4 x 10-&C-’ 
bo -2.5 x lo-” cm2/dyn* 
CO -2.7 x lo-‘C-l 
do -2.7 x lo-” cm2/dyn* 
e0 8.0 x 10-2C-’ 

.o f 

m0 

n0 

0 (no data) 
1.7 x 10-3c-1 
4.3 x lo-” cm’/dyn* 

1.2 x lO-3 g/cm3 
10’ ergs/g C 
0.145cm*/s 
0.72 
3.5 x 1o-3 c-l 
10e6 cm’/dyn 
4.5 x 10-5c-1t 
1.9 x 10-9cm2/dyn$ 
2.8 x lo-3 c-l 
0 (kinetic theory) 
-3.6 x 10-3C-’ 

(perfect gas) 
0 (perfect gas) 
2.4 x 1O-3 C-’ 
0 (kinetic theory) 

*Meyer et al. [ 161. 
tKreith [13]. 
fHilsenrath et al. [17]. 

Table 2. Non-dimensional parameters (25) for 
water and air at To = 15 C, PO = 1 atm 

Water Air 

81 
82 

E3 

E‘s 

ES 

86 

E7 

88 

89 

El0 

El1 

1.5 x lo-4fl 
4.8 x lO-8 L 

-2.7 x lO-20 
-2.7 x 10-8L 
-2.4 x lO-4I3 
-2.4 x lo-‘L 

1.7 x lo-38 
4.2 x lo-‘L 
8.0 x lo-28 
0 
3.5 x lo- 9 L 

3.5 x 1o-3 0 
1.2 x 10-Y!_ 
2.8 x 10-30 
0 
4.5 x 1o-5 0 
2.3 x lO-9 L 
2.4 x lO-30 
0 

-3.6 x lO-30 
0 
3.6 x lo-’ L 

of a) and &s (pressure variation of K) be small. These 
require that 

L9 < 1.25c (38) 

and 
L < 2.4 x lo5 cm. (39) 

Requirements (33) and (34) may be rewritten as 

L O.lc 

and 

-<J=9.9.104cm/C 
0 CrogG 

(4) 

0.1 cm L<-= 3.5 x 106cm. 
cr0gPr 

In the case of water (41) is less demanding than (39). 
Figure 1 shows the restrictions due to conditions 
(38)-(40). It is seen that the strict Boussinesq equations 
are valid in the shaded region to a maximum Rayleigh 
number of more than 10”. This is about 14 decades 
above the onset of turbulence in this geometry 
(Krishnamurti [lS]). As far as the extended Boussinesq 
equations are concerned, since (41) is more relaxed 
than (39), they can be written without the dissipation 
term and their validity extends throughout the lower 
rectangular region of Fig. 1. 

106 

Ra=2-35x10 

I 
0.01 0.1 I IO 

0, c 

FIG. 1. Regions of validity of the Boussinesq approximation 
in water (To = 15 C, PO = 1 atm). 

In the case of air, similar results are obtained. The 
most demanding of (26) are that cl (variation of p 
with T) and c2 (variation of p with P) be small. These 
require that 

Q < 28.6C (42) 

and 

L < 8.3 x 104cIn. 

Conditions (33) and (34) are 

(43) 

$ < 102ocm/c (44) 

and 

L < 4.1 x 105cm. (45) 

HMT Vol. 19. No. 5-G 
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FIG. 2. Regions ofvalidity of the Boussinesq approximation 
in air (To = 15 C, PO = 1 atm). 

Once again (45) is automatically satisfied. The require- 
ments of conditions (42)-(44) are illustrated in Fig. 2. 
The strict Boussinesq equations may be applied in the 
shaded region up to a maximum Rayleigh number of 

nearly lo”, almost 13 decades above the onset of 

turbulence (Krishnamurti [15]). The extended 
Boussinesq equations without dissipation are valid in 

the rectangular region. 

CONCLUSIONS 

The strict Boussinesq equations (3.53-(37) are the 

basis for nearly all analyses of natural convection. The 
derivation presented here is the first which is simul- 
taneously valid for liquids and gases. It is also the first 
derivation to be logically consistent with the state 
postulate of thermodynamics by allowing all properties 
to be functions of two state variables. These achieve- 
ments, while aesthetically satisfying, do not have great 

practical merit per se. There are, nevertheless, two very 
important practical advantages of the derivation 
presented above. In the first place, this derivation 
makes the limits of validity of the equations explicit. 

Second, the method used here allows deviations from 
strict Boussinesq behavior to be accounted for in a 

systematicmanner. By means of the method introduced 
in ‘this paper, the conditions under which the 
Boussinesq approximation can be applied can be 
determined for any given Newtonian fluid and reference 
condition. 
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SUR LA VALIDITE DE L’APPROXIMATION DE BOUSSINESQ 
POUR LES LIQUIDES ET LES GAZ 

R&urn&-On prksente une nouvelle mAthode d’obtention des kquations approchk des koulements en 
convection naturelle. L’appiication systkmatique de cette mkthode conduit A des conditions prkises sur 
les divers termes B ntgliger. On montre que cette mkthode permet de sptkifier les conditions sous lesquelles 
s’applique l’approximation habituelle de Boussinesq dans un liquide ou un gaz Newtonien. La mCthode 

est appliquk g l’eau et g l’air B tempkature ambiante. 
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DIE GULTIGKEIT DER BOUSSINESQ-NAHERUNG 
FUR FLUSSIGKEITEN UND GASE 

Zusammenfassung-Urn Naherungsgleichungen fiir freie Konvektionsstromungen zu erhalten, wird eine 
neue Methode dargestellt. Die systematische Anwendung dieser Methode fiihrt zu expliziten Bedingungen 
fiir die Vernachliissigung verschiedener Terme. Es wird gezeigt, wie nach dieser Methode die Bedingungen 
dargestellt werden kbnnen, fur die die traditionelle Boussinesq-Naherung auf eine gegehene Newtonsche 
Fhissigkeit oder ein Gas angewendet werden kann. Die Methode wird fur Wasser und Luft bei 

Raumtemperatur angewandt. 

CIIPABE)U-HiBOCTb I-IPHMEHEHHR I-IPHbJIMXEHMJI bYCCEHECKA 
AJIJI XMAKOCTEfi M FA30B 

.‘hlOTllltHSI-~pliBOJUiTCRHOBbIiiMeTO~BbIBO~a npli6JIH~eHHbIXypaBHeHHti~JIfl3a&VIeCTeCTBeH- 

HO~KOHBeK~HU.~CnO~b3OB~H~~~~HHO~OMeTO~~nO3BO~~eTBflBHOMBHA~Bbl~CHBTb~CJIOBUR,np~ 

KOTOpblX MOmHO npeHe6peYb HeKOTOpbIMH YJIeHaMU B YpaBHeHHSX. nOKa3aH0, ST0 3TOT MeTOn 

On~A~~eT~C~OB~~,np~KOTOpbIXTp~~llUWOHHOenp~6~~~eH~e6~C~H~K~MO~~T6bITbHCnO~b- 

30BaHO AJ-UI CJIyYaK HbKJTOHOBCKOti KWlKOCTB tiJIiira3a. MeTOAHCnOnb3yeTCR &Wi BOnbI W BO3n)'Xa 

nps Koh4tiarHoB rehlneparype. 
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